Accretion and rotation power in millisecond pulsars

Alessandro Papitto

(ICE CSIC-IEEC Barcelona)
Rotation powered (radio) pulsars

Credits: NASA's Goddard Space Flight Center
Rotation powered (radio) pulsars

Credits: NASA's Goddard Space Flight Center
The fundamental plane of pulsars

Millisecond pulsars
[Backer+ 1982 Nature]
- weakly magnetized
- often found in globular clusters → old systems
The fundamental plane of pulsars

Millisecond pulsars
[Backer+ 1982 Nature]
- weakly magnetized
- often found in globular clusters
 → old systems
- often in binaries

Spinning up neutron stars

Credits: NASA's Goddard Space Flight Center
A new transient in M28, IGR J18245-2452

IGR J18245-2452: a new hard X-ray transient discovered by INTEGRAL

ATel #4925; D. Eckert (ISDC, Switzerland), M. Del Santo, A. Bazzano (INAF/IAPS Rome, Italy), K. Watanabe (FGCU, USA), A. Paizis (INAF-Milano, Italy), E. Bozzo, C. Ferrigno (ISDC, Switzerland), I. Caballero (CEA, France), L Sidoli (INAF-IASF Milano, Italy), L. Kuiper (SRON, Netherlands)
on 29 Mar 2013; 11:18 UT
Distributed as an Instant Email Notice Transients
Credential Certification: E. Bozzo (enrico.bozzo@unige.ch)

Flux (20-100 keV) $\sim 9 \times 10^{-10}$ erg/cm2/s

X-ray luminosity \sim few $\times 10^{36}$ erg/s \rightarrow accretion power
IGR J18245-2452 is an accreting millisecond pulsar

X-ray coherent pulsations detected at an amplitude of \(\sim 10\% \)

\[
P_{\text{spin}} = 3.9 \text{ ms} \\
P_{\text{orb}} = 11.0 \text{ hr} \\
M_{\text{comp}} \sim 0.2 \text{ M}_{\odot}
\]
Discovery of a transitional pulsar

Radio PSR (rotation power)
X-ray pulsar (accretion power)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IGR J18245–2452</th>
<th>PSR J1824–24521</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Ascension (J2000)</td>
<td>$18^h 24^m 32.53(4)^a$</td>
<td></td>
</tr>
<tr>
<td>Declination (J2000)</td>
<td>$-24^\circ 52' 08.6(6)'$</td>
<td></td>
</tr>
<tr>
<td>Reference epoch (MJD)</td>
<td>56386.0</td>
<td></td>
</tr>
<tr>
<td>Spin period (ms)</td>
<td>3.931852641(2)</td>
<td>3.93185(1)</td>
</tr>
<tr>
<td>Spin period derivative</td>
<td>$< 2 \times 10^{-17}$</td>
<td></td>
</tr>
<tr>
<td>RMS of pulse time delays (ms)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Orbital period (hr)</td>
<td>11.025781(2)</td>
<td>11.0258(2)</td>
</tr>
<tr>
<td>Projected semi-major axis (lt-s)</td>
<td>0.76591(1)</td>
<td>0.7658(1)</td>
</tr>
<tr>
<td>Epoch of zero mean anomaly (MJD)</td>
<td>56395.216889(5)</td>
<td></td>
</tr>
</tbody>
</table>

Papitto et al. 2013,
Nature, 501, 517
Reactivation of the radio pulsar

Weak radio pulsar signal (~10-50 microJy) detected less than two weeks since the end of the X-ray outburst (GBT, PKS, WSRT)
M28: a decade of observations

Radio pulsar faint and irregularly eclipsed

Past **X-ray brightening** seen by Chandra - August 2008
Swings driven by mass in-flow rate variability

Low Mass in-flow rate:
Magnetic field dominates
→ rotation powered Radio PSR

Credits: NASA's Goddard Space Flight Center
Swings driven by mass in-flow rate variability

Low Mass in-flow rate:
Magnetic field dominates
→ rotation powered Radio PSR

High Mass in-flow rate:
Gravity dominates
→ accretion powered X-ray PSR

[Stella+ 1994; Campana+ 1998; Burderi+ 2001]
IGR J18245-2452: X-ray flux variability

Dramatic Flux and spectral variability point to the onset of a centrifugal barrier (propeller effect)

Dramatic Flux and spectral variability point to the onset of a centrifugal barrier (propeller effect)

Ferrigno, Bozzo, Papitto, Rea +
More transitional pulsars: PSR J1023+0038

A 1.7 ms **Radio PSR** in 2009

Accretion disk in 2000-01 (but faint in X-rays)

A state transition must have occurred, even if unobserved

Archibald et al. 2009, Science
June 2013, a new state transition

Radio pulsar disappears

5-fold increase of gamma-ray flux

PSR J1023+0038: June 2013, a new state transition

Broad double-peaked optical emission lines

Halpern+ 2013, Atel 5514
PSR J1023+0038: June 2013, a new state transition

10-fold increase of the X-ray flux
A third transitional pulsar: XSS J12270-4859

Sub-luminous ($\sim 10^{34}$ erg/s) in X-rays

- X-ray variability
- Low mass companion and disk
- Gamma-ray bright

Detected as a **Radio PSR**

- Very faint in X-rays ($\sim 10^{32}$) erg/s
- No disk

[De Martino+2010, 2013; Saitou+2010; Hill+2011]

[Bassa+2014, Bogdanov+2014, Roy+ 2014]
The three states of millisecond pulsars

- **Accretion powered state**
 - X-ray pulsations
 - \(L_{\text{X-rays}} \) (erg/s): \(10^{36} \) through \(10^{35} \)

- **Sub-luminous disk state**
 - Radio/gamma-ray pulsations
 - \(L_{\gamma\text{-rays}} \) (erg/s): \(10^{34} \) through \(10^{33} \)

- **Rotation powered state**
 - Undetected
 - \(L_{\text{X-rays}} \) (erg/s): \(10^{32} \) through \(10^{31} \)
 - \(L_{\gamma\text{-rays}} \) (erg/s): \(10^{33} \) through \(10^{34} \)
Sub-luminous disk state: X-ray pulsations

PSR J1023+0038
Archibald et al. 2015

Pulsed flux ~10 times larger than during radio pulsar state
→ accretion powered pulsations

XSS J12270-4859 - Papitto et al. 2015

X-ray luminosity ~1000 times lower than in accreting ms pulsars
Implication of X-ray pulsations

The mass accretion rate on the NS surface is 100 times smaller than the one required to keep the magnetosphere inside the corotation radius

$$(dM/dt)_{NS} \sim 10^{-2} (dM/dt)_{disk}$$

>95% of the inflowing mass ejected?
Propeller outflows

3d MHD simulations of propeller ejection of matter

Lii, Romanova+ 2014 – for a disk terminated close to the corotation surface, part of the inflowing mass manages to accrete and part is launched in an outflow.

→ Accretion and outflows can coexist
Radio brightness similar to BHs

A propeller model: the gamma-ray emission

$E_{\text{cut}} \sim \text{few GeV}$

\rightarrow radio pulsar models, GeV electrons of magnetospheric origin

\rightarrow propeller model, electrons accelerated at the turbulent disk-magnetospheric boundary

Accelerated electrons into a

strongly magnetized (10^6 G) and **relatively small** (~few tens of km) environment

\rightarrow **synchrotron** (up to MeV)

\rightarrow **self-synchrotron Compton** (up to GeV)

Good modelling for $R_{\text{in}} \sim 2 R_{\text{co}}$

The three states of millisecond pulsars

- **Accretion powered state**
 - X-ray pulsations
 - $L_{\text{X-rays}} = 10^{36}$ erg/s

- **Sub-luminous disk state**
 - Propeller outflows?
 - $L_{\gamma\text{-rays}}$ undetected

- **Rotation powered state**
 - Radio/gamma-ray pulsations
 - $L_{\gamma\text{-rays}} = 10^{34} - 10^{35}$ erg/s
Candidate transitional pulsars

Eclipsing radio pulsars [Fruchter+ 1988]

~50 known; bright gamma-ray sources
- Black widows ($M_c < 0.1$ Msun)
- Redbacks ($M_c \sim 0.2-0.7$ Msun)

The three transitional pulsars discovered so far are redbacks
Candidate transitional pulsars

Accreting millisecond pulsars

15 known [Wijnands & van der Klis 1998]

Weak X-ray transients (L_{peak} \sim 10^{36} \text{ erg/s})

A **radio PSR** turning on
during quiescence (L \sim 10^{32-33} \text{ erg/s})?

Reprocessed optical light [Burderi+2001, Campana+2002]

Orbital evolution [Di Salvo+ 2008, Patruno+2012]

...but no detection in radio, expect IGR J18245-2452

[Burgay+2003, Iacolina+2011, Xing+2012]
Does a radio pulsar turn on in quiescence?

Radio pulsar not detected, expect than for IGR J18245-2452
[Burgay+ 2003, Iacolina+ 2011] → enshrouding by intervening matter?

A candidate gamma-ray counterpart for SAX J1808.4-3658
[Xing+ 2015, de Oña Wilhelmi, Papitto+ 2015]

Accurate search for gamma-ray pulsations did not yield to a detection

$L_\gamma = (3.5 +/-.0.3) \times 10^{33} \text{ erg cm}^{-2}$
→ ~30% of the spin down power
Evolutionary scenarios

Is the transitional phase common? Which evolutionary channels?

[Graph showing evolutionary scenarios with markers for Classical MSP, Red Backs, Black Widows, and Accreting MSP, plotted against Orbital Period and Companion Mass (solar mass).]
An intermediate spin distribution

Papitto, Torres, Rea, Tauris, 2014, A&A
Tauris 2012, Science, 335, 561
Open questions

• What drives variations of the mass in-flow rate?
 Tidal interactions? Mass accumulation?

• Outflows during accretion powered stage
 (radio/X-ray correlations)?

• Origin of the gamma-ray emission during the sub-luminous
 accretion disk stage (propeller origin?)

• Are all millisecond pulsars in close binary systems transitional?
Thank you to...

N. Rea, D. Torres, J. Li, E. De Oña Wilhelmi (ICE, CSIC-IEEC Barcelona),
E. Bozzo, C. Ferrigno, L. Pavan (ISDC Genéve),
L. Burderi, A. Riggio (Univ. of Cagliari), T. Di Salvo (Univ. of Palermo),
S. Campana, P. D’Avanzo (INAF OA Brera), L. Stella (INAF OA Roma),
P. Romano (INAF IASF Palermo),
C. Pallanca (Univ. of Bologna), T. Tauris (Univ. of Bonn),
J. Hessels (ASTRON, Univ. Amsterdam), S. Ransom (NRAO),
P. Freire (MPIfR Bonn), M. Falanga (ISSI Bern, ISSI Beijing),
I. H. Stairs, M. D. Filipovic, J. M. Sarkissian, M. H. Wieringa, G. F. Wong (ATNF),
D. De Martino (INAF OA Napoli), T. M. Belloni (INAF OA Brera),
M. Burgay, A. Possenti, A. Pellizzioni (INAF OA Cagliari)